JEE Main 2020 (Online) 3rd September Evening Slot MCQ (Single Correct Answer)

Let R_1 and R_2 be two relation defined as follows :

$$R_1 = \{(a, b) \in R^2 : a^2 + b^2 \in Q\}$$
 and

$$R_2 = \{(a, b) \in R^2 : a^2 + b^2 \notin Q\},\$$

where Q is the set of all rational numbers. Then :

- \triangle Neither R_1 nor R_2 is transitive.
- B R₂ is transitive but R₁ is not transitive.
- R₁ and R₂ are both transitive.
- 0 R₁ is transitive but R₂ is not transitive.

Explanation

For R_1 :

Let
$$a = 1 + \sqrt{2}$$
, $b = 1 - \sqrt{2}$, $c = 8^{\frac{1}{4}}$

$$aR_1b : a^2 + b^2 = 6 \in Q$$

$$bR_1c : b^2 + c^2 = 3 - 2\sqrt{2} + 2\sqrt{2} = 3 \in Q$$

$$aR_1c : a^2 + c^2 = 3 + 2\sqrt{2} + 2\sqrt{2} \notin Q$$

∴R₁ is not transitive.

For R₂ :

Let
$$a = 1 + \sqrt{2}$$
, $b = \sqrt{2}$, $c = 1 - \sqrt{2}$

$$aR_2b : a^2 + b^2 = 5 + 2\sqrt{2} \notin Q$$

$$bR_2c : b^2 + c^2 = 5 - 2\sqrt{2} \notin Q$$

$$aR_2c: a^2 + c^2 = 3 + 2\sqrt{2} + 3 - 2\sqrt{2} = 6 \in Q$$

∴ R₂ is not transitive.

Again different types of relations definition is used to solve this question.